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In the framework of generalized quantum theory using a W*-algebraic for- 
malism, we introduce a completely symmetric coherence relation for states which 
is also applicable to nonpure states. Making use of lattice theoretic results the 
properties of this relation, especially its connection with incompatibility, are 
investigated. By means of algebraic decomposition theory the investigation is 
reduced to the case of factors where a complete classification of the coherence 
classes is given. 

1. INTRODUCTION 

There are mainly two features which exemplify the drastic change in 
conceptions quantum theory constitutes with respect to classical physics: 
The occurrence of principally incompatible observables and the possibility 
of coherent state superpositions. It is well known how to formulate mathe- 
matically these features in traditional Hilbert space quantum mechanics. 
But also in more general descriptions it is important to clarify all questions 
connected with these basic structures. 

Here and in the following let us understand by a "description" the 
mathematical specification of the set of observables and the set of states in a 
physical theory, together with the duality relation, which gives the (expecta- 
tion) values of the observables in the states. To every description belongs 
the group of structural symmetries consisting of those transformations in 
one of these sets which can be compensated for by a dual (and inverted) 
transformation in the other set. The simultaneous application of both 
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transformations leaves then the physical content of the theory unchanged. 
In this terminology a closed dynamical system would consist of a descrip- 
tion in which a one-parameter group of structural symmetries is singled out 
as the set of time translations. 

The term "traditional quantum mechanics" will here be used for the 
description which has Y,~(~, , ) ,  where ~(6),,) stands for the set of all 
bounded linear operators on the (separable) Hilbert space ~,,, as the set of 
observables and in which the states are given by the set of all density 

e;5 operators in Y~,, ~,,. The ,~,, are usually called coherent subspaces. For 
foundational investigations and for the study of systems with infinitely 
many degrees of freedom or systems having classical and quantum features 
more general descriptions have been developed. If one concentrates on 
yes-no experiments one comes along with an orthocomplemented (ortho- 
modular) lattice for the set of observables. Such a lattice description, where 
the states are some set of positive normalized, completely orthoad- 
ditive functions on the lattice, is called a quantum logic (Jauch, 1968; 
Varadarajan, 1968; Piron, 1976). More operationalistic approaches require a 
description where the observables are at least embedded in the dual of an 
ordered vector space (Ludwig, 1970; Davies and Lewis, 1970; Edwards, 
1970). The various algebraic descriptions arise by abstraction and generali- 
zation of the operator algebras in traditional quantum mechanics to W* and 
C* (among other) algebras (Emch, 1972). 

We employ throughout the paper the W*-algebraic description, where 
the observables are given as (setf-adjoint) elements of a (Hilbert-space-inde- 
pendent) W* algebra and the states by all positive, normalized, normal 
linear functionals of the algebra. This description is distinguished by its 
formal elegance and, in connection with this, by having the richest structure 
of all space-independent descriptions. For a more fundamental motivational 
discussion of W*-algebraic descriptions we refer to (Primas, 1980, 1981). 
Moreover, many investigations in a C*-algebraic description can be mapped 
into a W*-algebraic framework. Complicated physical systems such as 
macromolecules and many-body systems require descriptions with arbi- 
trarily complex W* algebras, the centers of which represent the classical 
observables. The limiting case of purely classical systems is described by an 
Abelian W* algebra. Thus we carry out our investigation in a general W* 
algebra, the only restrictive assumption (that of a separable predual) coming 
into play when applying the central decomposition theory. 

In the exposition of the required mathematical formalism for W*-alge- 
braic descriptions (Section 2) emphasis is laid on the properties of supports, 
lattice theoretical notions, and decomposition theory. 

Starting from the special case of pure states in Section 3 a Hilbert- 
space-independent formulation of a coherence relation for three arbitrary 
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(normal) states is proposed. This generality is required by the facts that, 
firstly, the observable algebras of complicated physical systems have many 
not unitarily equivalent representations--at least in a certain approximation 
- -so  that the fundamental structures should belong to the algebraic part of 
the description and that, secondly, the pure states play a much less im- 
portant role then, than in traditional quantum theory. The possible presence 
of many classical observables leads also to state relations, where quantum 
mechanical coherent superpositions are classically mixed. But at first we 
carry out only the formal investigation of the coherence relation, make 
explicit its connection with lattice theoretic notions, and show that it is 
intimately related to incompatibility. Further on, the coherence relation is 
decomposed into relations for factors and an appropriate generalization of a 
coherent sector is worked out. 

In Section 4 we specialize to factors and classify there the coherence 
classes. 

In the conclusions we give a first physical interpretation of the ob- 
tained results. 

As for the literature concerning the coherent superposition of states one 
must mention the classical exposition (Dirac, 1930) where the unrestricted 
superposition principle is used to find the appropriate mathematical state 
concept for microsystems. It seems that the first systematic discussion of a 
quantum system with superselection rules, where Dirac's superposition 
principle is thus broken, was performed as late as in Wick et al. (1952). 
Jauch (Jauch and Misra, 1964; Jauch, 1968) not only elaborated the general 
theory of quantum descriptions with superselection rules but also put 
forward a completely new formulation of the coherent superposition rela- 
tion referring it to atomic propositions of quantum logics. Also in quantum 
logics but now referring to states, Varadarajan (1968) formulated a notion 
of superposition and a version of a superposition principle which both are 
not characteristic for quantum mechanics. Gudder (1970), and Pulmannova 
(1980) also deal with Varadarajan's formulation. For pure states of a 
C*-algebraic description the coherent superposition relation is examined in 
Roberts and Roepstroff (1969). The only reference we know of, in which it 
is also proposed to apply Jauch's superposition relation to the support 
projections of normal states in W*-algebraic descriptions is Chen (1973). 
This paper contains some erroneous statements, notably Proposition 1. 

2. FORMALISM OF W*-ALGEBRAIC DESCRIPTIONS 

For later application we collect here some mathematical formalism of a 
W*-algebraic description, that is a description which is based on a W* 
algebra 9Y~ and the set | of all normal states of .~.  Here and in the 
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following, the word state used in a mathematical context will always mean 
normal, positive, normalized linear functional. For general information on 
W*-algebras, we refer to the standard textbooks (Dixmier, 1969; Sakai, 
1971; Str~til/~ and Zsid6, 1979; and Takesaki, 1979). 

The group | of structural symmetries of this description consists of all 
affine bijections ~,: | | By a slight modification of the reasoning in 
Kadison (1965) one concludes that for u ~ |  the dual mapping a=~,*: 

~ ~ is a Jordan-.-automorphism. 
The set of all projections (i.e., self-adjoint idempotents) in ~ is 

denoted by p(Lt~), and the lattice operations may be introduced algebrai- 
cally as follows [P, QE P ( ~ ) ] :  

P<~Q if PQ= P (1) 

P • = 1 - P, where 1 is the multiplicative identity in ~ .  (2) 

P / X Q = o ( ~ ,  &~, ) -  lim (PQP)"= inf (PQP)" 
n - -  o c  n E N 

(3) 

P V Q = I - ( P •  AQ • (4) 

With these definitions P ( ~ )  is a complete lattice with orthocomplementa- 
tion _L. A Jordan-*-automorphism restricted to P(9.)~) constitutes an 
ortholattice automorphism, that is a bijection of P ( ~ )  which preserves the 
operations _1_ and A (and thus also ~< and V). Conversely, every ortho- 
lattice automorphism of P ( ~ )  may be extended to a Jordan-.-automor- 
phism of ~0~ provided ~Y~ has no direct summand of type 12 (Dye, 1955). A 
Jordan-*-automorphism is automatically o(.~,g)~.)-continuous, and its 
dual maps the normal states of ~0~ one-to-one and onto themselves, and is 
thus a structural symmetry. 

Associated with each state P E | there are two very useful projections, 
the support of p 

Sp = i n f ( P ~  P( ~0~ ): p(PAP) = p( A ), VA E ~ } (5) 

and the central support of p 

Cp - - i n f{PE  P ( 3 ) :  p( PAP ) = p( A), VAE 9)2} (6) 

where 3 denotes the center of ~ .  By normality, p(gp)=p(Co)= 1, and 
these are the smallest projections in P ( ~ )  and P( 3 ), respectively, with this 
property. Furthermore, Cp = inf{PE P ( 3 ) :  S o ~< P} is the central cover of 
S o. p is pure iff Sp is minimal in P ( ~ ) ,  and only in this case is p uniquely 
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determined by S o. p is factorial (i.e., the corresponding GNS representation 
is a factor) iff C o is minimal in P( ~ ). Two states p and r are quasiequivalent 
iff C o--C,p, p is faithful, iff S o = l .  S o and C~ are always o-finite (or 
countably decomposable), that is they dominate an at most countable 
family of pairwise orthogonal nonzero projections. Conversely, if P ~  P(~J~ ) 
is o-finite, then there is a (normal) state O, such that S o -- P. 

Physically, the support S o may be considered as the smallest filter 
which O passes unchanged, and Cp as the smallest of these filters which can 
be devised by means of classical observables only. 

For u E | and with a = l,*, one has 

S , , , o , = a - ' ( S ~ )  (7) 

(8) 

for every p ~  | If 7r: ~.P~ ~ ~ C ~(,~, ,)  is a W* isomorphism of ~.)~ onto 
a v o n  Neumann algebra over a Hilbert space ~,,,  then or* maps | 
affinely and bijectively onto |  and we have for the support of 
p~r=(cr*)- I (p)= p o ~  - I  

Sp =~(gp) (9) 

for every pE  | Let the density operator D~ of p~ (which need not be 
unique) have the spectral decomposition D= = Y,,,?~,,P,,, ?~,, > 0; then 

S o =  in f{PE P ( ~ . ) '  P/> V,,P,,} 

= [ g x - ( v , , p , , ) 8 . ]  (10) 

where [. . .]  stands for the projection onto the smallest closed subspace 
containing the set in the bracket and a prime denotes the commutant in 
~ ( ~ , , )  (Dixmier, 1969, p. 5). 

In order to understand the peculiarities of P(gY~) it is useful to cite first 
some notions of the theory of general orthomodular lattices. Let 9. be a 
lattice under the ordering ~< with the universal bounds 0 and 1. A map • 
9- --, 9- is called an orthocomplementation if 

(i) P ~ Q implies Q 1 ~< p - (11) 

(ii) ( P ' ) •  = P ,  V P E ~  (12) 

(iii) P A P  x =0 ,  VP@9- (13) 
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Then one concludes that 0 • = 1, _L is one-to-one, and 

( P V Q )  • = P •  j- (14) 

One easily verifies that (2) fulfills (11)-(13). 
Let us call an ordered triple (P, Q, R) of elements of ~ distributive if 

P A(QV R ) = ( P  AQ)V(P AR) (15) 

2 is called distributive if all its triples are distributive. In orthocomple- 
mented lattices one has the compatibility relation (Birkhoff and von 
Neumann, 1936) 

PKQ, if (P ,  Q, Q• ) is distributive (16) 

This relation is symmetric iff the orthocomplemented lattice satisfies a very 
weak distributivity property, the so-called orthomodularity condition: 

Q ~< P implies PKQ (17) 

(Nakamura, 1957), a condition which is satisfied in P(2~?). In an orthomod- 
ular lattice [i.e., an orthocomplemented lattice satisfying (17)] one has 
furthermore (Piton, 1964) 

PxQ, iff C(P,Q) ~(P A Q ) V ( P  AQ •  • A Q ) V ( P  • AQ • 

=1 (18) 

and from this 

PKQ, iff the smallest sublatticewhich 
contains P and Q is distributive 

In P(~)~) we have a simple characterization of compatibility 

(19) 

Thus P(~? ) is distributive iff ~ is Abelian. The lattice expression C(P, Q) 
associates to a pair P and Q, an element in P ( ~ )  ranging from 0 to 1. From 
(18) one is led to interpret the smallness of C(P, Q) as a measure of the 
incompatibility of P and Q. Thus we propose the following definition. 

2. I. Definition. Two elements P and Q in an orthocomplemented lattice 
are called maximally incompatible if C(P, Q) = O. 

P~Q, iff [ P , Q ] _  = 0  (20) 
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We see that C(P,Q)--O iff all four intersections P~• 
which was denoted P and Q are in "position P "  in Dixmier (1948). 

In the (quantum) logical interpretation of a (nondistributive) ortho- 
modular lattice the elements of the lattice are called "propositions." A 
proposition P is said to be " t ruth definite" or "objective" in a state if it has 
the expectation value 0 or 1; in the latter case it is also said to be 
"actualized." In a pure state of a nondistributive lattice the one of two 
compatible propositions is truth definite if the other is so. In general the 
propositions have expectation values in the interval [0, 1] and the logical 
interpretation of the lattice operations requires some caution. In an ortho- 
modular lattice P ~< Q and P <~ Q • imply each PxQ, so that <~ and _1_ can 
indeed be interpreted as "implication" and "negation," respectively. 

In pursuing the point further we specialize to 2 = P(g)~ ) and consider a 
state 19 E | The set 

= {,oE P(932 ). 19(p) E {0,1) } (21) 

is then a complete orthomodular sublattice of P(gJ~ ), and the restriction of P 
to ~p is an ortholattice homomorphism of %p onto the Boolean algebra 
{0, 1 } = P(932 = C). With this background information the meaning of maxi- 
mal incompatibility is clarified as follows. 

2.2. Proposition. Two propositions P, Q E P(932) are maximally incom- 
patible, iff they cannot be simultaneously truth definite in any state. 

Proof Suppose {P, P•  c_%p for some state p. Then there is a 
pair R, SE{P,P• • with 19(R)=p(S)=l, and then p(RAS)=I ,  
which gives a contradiction if C(P, Q)- -0 .  Thus C(P, Q ) >  0. If C(P, Q)> 
0, then for some pair R, SE  {P, P • Q, Q • ), R A S > 0, and there is a state 
P with p(R A S ) =  1 for R A S  dominates at least one o-finite projection. 
Then O(R)=p(S)=I because both projections dominate RAS, and 
t9( R • ) =  19(S • ) = 0, which implies { P, P ", Q, Q • } c_ %p. �9 

The quantum logical investigations above did not make much use of 
the fact that P(732) is obtained from a W* algebra. This, however, comes 
into play in the equivalence relation of von Neumann and Murray, defined 
as: P-Q,  if there is a W E ~  with P - - W * W  and Q = W W * ,  which 
automatically implies that W can be chosen to be a partial isometry. If there 
is a unitary element UE ~ ,  such that Q- -UPU*,  we say that P and Q are 
unitarily equivalent and write P'~'Q. P~Q holds iff P - Q  and P •  ~ Q •  
hold. Let us recall some facts concerning the equivalence relation - in 
P(93~), especially the parallelogram law 

( P V Q ) A P • 1 7 7 1 7 7  (22) 
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valid for all pairs P,Q~P(~) .  One writes P-<Q if there is a projection 
R ~ P with R~<Q, and finds P-<Q and Q-< P implies P - Q .  If 9.~ is a 
factor (i.e., has a trivial center) the --equivalence classes are totally ordered 
by the natural order induced by -<. This total order is mapped order- 
isomorphically by the dimension function D into the extended nonnegative 
reals, the range of this mapping being characteristic for the type of the 
factor. Viewed as a function on P(gJ~) the dimension function is char- 
acterized uniquely (up to a positive dilation) by the properties 

D(P) = 0, iff P = 0 (23) 

PJ_Q(i.e.,P<-Q• (24) 

Pisfinite(i.e.,P~Q,Q<~PimplyP=Q)iffD(P)<oo (25) 

P - Q, iff D(P) = D(Q) (26) 

Using (22) we obtain 

D(P)+ D(Q) = D(P AQ)+ D(P V Q) (27) 

As an attempt to introduce a purely lattice theoretic version of an 
equivalence relation von Neumann (1960) introduced the notion of perspec- 
tivity, a modification of which is strong perspectivity. 

2.3. Definition. Two elements P, Q in an orthocomplemented lattice are 
called perspective (via a third element R) if 

P A R = Q A R = O  and P V R = Q V R = I  (28) 

for some R in the lattice. P and Q are called strongly perspective (via R) if 

P A R = Q A R = O  and P V R = Q V R = P V Q  (29) 

for some R in the lattice. 

If an orthomodular lattice P and Q are strongly perspective via R then 
they are perspective via R V ( P "  A Q l )  (whereas perspectivity implies 
strong perspectivity only in a so-called modular lattice). The decisive 
property of perspectivity to use it for the introduction of a dimension 
function and for classificatorial properties would be its transitivity, which is, 
however, not valid in a general orthomodular lattice (Holland, 1970). In the 
special orthomodular lattice P ( ~ )  of an arbitrary W* algebra 9~ one has 
the following: 

2.4. Lemma (Fillmore, 1965). If for P,Q~P(T)~), P AQ=O 
and P - Q ,  then P and Q are strongly perspective. 
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With this one can show the following: 

2.5. Theorem (Fillmore, 1965). Two elements in P(937) are 
perspective iff they are unitarily equivalent. 

These two results, which will be of fundamental importance for our 
study of the coherence relation, reveal indeed an intimate relationship 
between perspectivity and equivalence and show the transitivity of the 
former relation. Let us mention a simple but useful consequence thereof. 

2,6. Corollary. For two elements P , Q  E P(8,]~) equivalence 
(P ~ Q) and trivial intersection (P/XQ = O) imply unitary equiva- 
lence ( P '~' Q ). 

In order to apply the algebraic decomposition theory also to the lattice 
operations and relations, we have to assume that 9)? has a separable predual 
(i.e., can be faithfully represented as a yon Neumann algebra over a 
separable Hilbert space), and we use the following setup: We start from a 
faithful (normal) state q~ of 932 and construct the central measure/Z of r (For 
an exposition of algebraic decomposition theory, cf. Bratteli and Robinson, 
1979; and Takesaki, 1979). Since | is separable/Z is supported (and not 
only quasisupported) by factor states. 9.~ is then W*-isomorphic to OJ?~ = 
%(~)J~ ), where (%, ~ ~, s  is the GNS triplet corresponding to % The GNS 
triplet is unitary equivalent, and thus will be identified with a triplet of 
decomposable objects. We write 

= f % .  d/z(,o) (30) 

a,. = f*a a/z(,o) (31) 

(32) 

where again ~R,o = %(~2) and (%,  ~,o, s is the GNS triplet for arbitrary 
~0~ 6 , .  An operator A ~  N(~q,) is in Z02~, iff there exists a/*-measurable, 
essentially bounded field of operators {A'~ A ' E  ~(~,o),  co ~ | such that 
for q' = f*'t',~d/z(oa)E ~ ,  A ' t '=  f ~A" l z ,  od/z(co ). We then have the point- 
wise decomposition of all ,-algebraic operations in Z02~, and in virtue of 
(1)-(4) the lattice operations are pointwise decomposed. Since every 0 E | 
may be viewed as an element in |  it is associated with a (/z-a.e. 
unique) integrable field (p'~E |  ~0~ |  such that for all A E ~ ,  
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p( A) = f A )a/z(to) (33) 

P = " j e o ~  d/z( to ) (34) 

The following results are either directly from von Neumann (1949), or are 
readily derived from this fundamental paper. 

2.7. Proposition. Let g)~ be a W* algebra with a separable predual. 
Identifying :!~ with the central decomposition (32) of ~.t~,p acting on (30), 
where 99 is any faithful (normal) state of ~)~, one has 

f e p ' ~  d/z(to) = P E  P(~3~ ), iff P ' ~  P(~)~ ,~) /z-a.e. ( P •  = (P~) •  (i) 
= 1 '~ - P'~/z-a.e. 

(ii) If P, Q E  P(g3~ ), P = feP~ d/z(,~) and 

P <~ Q, iff P'~ <<- Q~ /z-a.e. 

P A O =  f e ( p ~  AO~ld/z(to) 

P -< Q, iff P'~ < Q'~/z-a.e. 

P '~' Q, iff P'~ ~ Q~/z-a.e. 

(iii) If fep~d/z( to)  = p ~  ~,,,  then (Sp) '~ = So~, and (C~) = Cp~ ~-a.e. 

(iv) If f e p,~ d/z(to) ~ P( 9.~ ), then D(P'~) is a/z-measurable function. 

Q =feQ~d/z(to), then 

(35) 

(36) 

(37) 

(38) 

3. THE GENERAL C O H E R E N C E  RELATION 

Let us begin our discussion of coherent superposition in an abstract 
W*-algebraic description by adapting to this formalism the definition of 
superposition given originally in Varadarajan (1968) within a quantum 
logical context (and then repeatedly rediscussed in the literature): Given 
two possibly mixed states P~ and P2 of a W* algebra 9,~, we say that a third 
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state 03 is a superposi t ion of p~ and P2, if for P ~  P(9)?) 

o , ( P )  = 0 ,  i = l , 2 ,  impl ieso~(P)=O (39) 

This relation is easily seen to be satisfied if P3 = ~kPl +(1  - )~)P2, XE [0, 1], 
i.e., if P3 is a mixture of O~ and 02- It can be shown that for commuta t ive  9)~ 
this is indeed the only possible form of superposi t ion,  and if one requires 
addit ionally all involved states to be pure then necessarily 2, = 0 or 1 
(Varadarajan,  1968). 

Let S, be the support  of p, and recall that S~ • is the largest projection 
with #,(S, • ) = 0. Then (39) can be writ ten P <~ S, -L , i = 1,2, implies P ~< $3• 
or St • A &• ~< S~'.  , or. finally 

S 3 ~< S, V S 2 (40) 

In tradit ional quan tum mechanics,  where ~.11~ - veg"~ - ~ - , , .  ~.'b,,), three states & are 
= ~,, .~.~,, which lie. pure iff they are given by state vectors "I',, i 1,2,3, of e 

respectively, in one coherent  subspace.  Since then S, is the projection onto 
the one-dimensional  subspace spanned by 'Is,, (40) is equivalent to 

qkt3 = Clq'tl q- c2xXt2, ciEC (41) 

and coincides with the usual Hilber t  space notion of coherent  superposi t ion 
of vector states in a coherent  subspace .75,,. Before entering the general 
discussion note that for pure states (39) is only nontrivial  if the states are 
distinct or, equivalently, have nonintersect ing supports.  

3.1. Proposition. Let Oi, i = 1,2,3, be pure states of a W* algebra. Then 
03 is a nontrivial  superposi t ion of 0~ and P2, iff 

S I / ~ S 2 = S I A S 3 = S 2 A S 3 = O  and S I V S 2 = S I V S 3 = S 2 V S 3  (42) 

where S, is the suppor t  of Oi. 

Proof. Assuming (42) one has S~ V S 2 = S I V ~ 1> S 3 and thus (40). 
Conversely,  assume (40) and nontriviali ty (Or 4-02, O~ 4= 03 and 02 =# 03). 
Then  since the Si are minimal  in P(93~ ) and characterize the O, uniquely, we 
have S, A S j = O  for 1 ~ i 4  =j<~3,  giving the first par t  of (42). Define 
Q , = S ,  V S  3, i = 1 , 2 .  Then S3<~Q,<~S 1 v S  2 by (40), and S I V Q 2  = S  2 V Q I  
= Q~ v Q2 = S1 v S 2. So to establish the second par t  of  (42) we have to 
show that S I ~< Q2 and that S 2 ~< QI. By atomicity,  we have Si A Qj = S i or 0, 
for 1 ~< i 4= j ~< 2. Suppose that S I A Q2 = 0, then using (22): Q2 = Q2 - ( S t  
A Q 2 ) ~ ( S  t v Q 2 ) - S  I = ( S  I V S 2 ) - S I ~ S  2 - ( S  I A S 2 ) =  S 2. Thus Q2 is an 
a tom,  which contradicts  0 < S 2 ~< Q2 unless S 2 ~< S 3, which is not the case. 
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This shows that S~ A Q2 = S~ or S~ ~< Q2- Repeating the same argument for 
S 2 A Qt, one obtains S 2 ~ QI" �9 

Proposition 3.1 reveals the fact that not only in traditional quantum 
mechanics but quite generally the apparently asymmetric superposition 
relation (39) is for pure states equivalent to the completely symmetric 
relation (42), or trivial. This symmetry, however, makes explicit the essential 
feature of a coherent superposition in contradistinction to a mixture: the 
superposition is not more mixed than the constituent states. In order to 
extend the notion of a coherent superposition also to nonpure states, we 
have, therefore, to use (42) instead of (39). That for nonpure states (39) is no 
longer equivalent to (42) but even almost meaningless is demonstrated by 
taking a faithful state for P~: then no P3 satisfies (42) whereas (39) imposes 
no restriction at all to/13 . 

3.2. Definition. Let Pi be states of a W* algebra with supports S,, 
i = 1,2, 3. We write 

K(pj,p2,P3), i f  S I A S  2 = S  1 A S  3 = S 2 A S  3 = 0 and 

S, VS2 =S, VS3 =S2 VS3 (43) 

and say then that the three states satisfy the coherence relation or that they 
constitute a coherent triple. We also write 

K(p~, P2), if there is a state 03 with K(p~, P2, P3) (44) 

and say then, that p~ and P2 are coherently superposable. 

By means of (43) and (44) we have introduced a symmetric ternary and 
a symmetric binary relation which are both denoted by the symbol K but 
discriminated by the number of components in the argument. 

In passing we note that the second part of (43) is equivalent to the set 
of implications 

p i ( P ) = p j ( P ) = l ( = O ) i m p l i e s p k ( P ) = l ( = O  ) (45) 

where P is an element in P ( ~ )  and (i, j ,  k) runs through all the permuta- 
tions of (1,2, 3). This again illustrates how much stronger the condition (43) 
is than (39) for nonpure states. 

The decisive structural classification of the coherence relation is ob- 
tained from the observation that (43) is valid, iff the supports are pairwise 
strongly perspective via the third one from the application of Fillmore's 
results. 



Coherence and Incomparability 279 

3.3. Theorem. (i) Let O, be states of a W* algebra with sup- 
ports S i, i = 1,2, 3. Then 

K(p~,Oz) , i f fg~As2=o and S j ~ S  2 (46) 

which implies SI,~,S 2. If K(pj, P2, P3), then the supports are pair- 
wise unitarily equivalent and the central supports are equal. 

(ii) If  O is a state of a W* algebra, then there exists a state q0 
such that g(p, cp), iff S o -< So • 

(iii) If  P is a projection of W* algebra, then there exists a 
projection Q such that C(P,Q)=O, iff P - P •  It follows that 
p , , p z , , Q •  

Proof (i) K(9 I, P2) implies the strong perspectivity of S I and S z, thus 
the unitary equivalence of S~ and S 2 by Fillmore's theorem, and hence the 
equivalence of S I and S 2. On the other hand, the right-hand side of (46) 
gives the strong perspectivity of S~ and S 2 by Fillmore's lemma, say via a 
projection S 3. Since S 3 ~< S I V S 2 and S I V S 2 is o-finite [being the support of 
)tpl + ( 1 -  X)02 for any 0 < ?, < 1], S 3 is o-finite and there is a (normal) state 
P3 supported by S 3. This shows that K(O~, P2) holds. It is now clear that 
K(Pl,  P2, 03) implies the unitary equivalence of the supports, and this 
implies immediately that the central supports are equal. 

(ii) Assume S o < So• then there is a projection P such that S o - P ~ Sp • 
It follows that S o A P = SoP = 0, and the right-hand side of (46) is satisfied, 
with P = S_~ which is o-finite. Conversely, assume K(O, ~). Then S o and S,p 

are strongly perspective via R, so R ~ S  o. Applying (22) we have R = 1 - R • 

=(SoA R) •  R • =(SoZ V R• ) -  R• • --(So• A R• ), and then Sp~ 
sr -(%• ARi )<S/. 

(iii) Suppose P - P •  then by Fillmore's Lemma P and P •  are 
strongly perspective via a Q, that is to say P / k Q = P  •  and 
p V Q =  p • v Q =  P • v P =1.  Taking orthocomplements, P • A Q  • = P 
A Q • = O, and C(P, Q) = O. On the other hand, if C(P, Q) = O, then P and 
P J- are strongly perspective via Q, hence perspective, hence unitarily 
equivalent. Furthermore, P and Q are strongly perspective via P • so again 
P~Q. �9 

3.4. Example. Consider a traditional quantum mechanical description 
with ~02 C_ N ( ~ )  such that ~-2'( C ~02) is a commutative totally atomic yon 
Neumann algebra. For three given unit vectors ' t ' iE .~ define 'I%(")= P,,'t'i, 
i = 1,2, 3, where the P, 's  are the atoms of ~ '  (i.e., of the center of ~ ) .  In 
order that the states 0j on ~02 defined by the state vectors q% satisfy the 
coherence relation (43) the central supports C i = 2,P,,, all n with 't'} ") e a 0, 
must necessarily be equal. This is the case, iff the components q%(") are 
nonvanishing for the same indices say n = m. Relation (44) is then fulfilled, 
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iff 

= : ( " ) + ( " )  (47) ~ I " "  :~ ~2 ( ' )  va o/~-,) and a/3("') c l ' ) O / l " '  + ~2 ~2 

for all m, where cl"')E C. [(47) is a special case of Theorem 3.8]. 
Whereas the negative statement, namely, p~ and 02 are not coherently 

superposable if 'tq and 'I '  2 are in different coherent subspaces P,,#,  is 
commonly accepted, the positive interpretation of (47) as a form of a 
coherence relation seems not to be in use at all. For an illustration of (47) 
imagine an experimental device which produces a beam in which two 
different kinds of particles occur in a fixed ratio and all particles of the 
same kind are in one and the same pure state. After separation it is possible 
to perform the double slit experiment with each subbeam and to observe 
interference phenomena. Thus we have a realization of (47) where every 
vector has two components, one for each kind of particle, and 'I" i, i = 1,2, 
are the states where the slits with the number i are open, and 'I" 3 is the state 
where both slits for each subbeam are open. It is of course only a matter of 
taste to call this experimental arrangement a coherent superposition of 
states of the total system. But already in this case where one relies on an 
explicit Hilbert space description the proposed coherence relation provides 
a concise formulation of rather involved, experimentally meaningful rela- 
tionships. 

The immediate idea, that our coherence relation, in which states are 
superposed without increasing the degree of mixedness, is only possible with 
incompatible observables, is made precise as follows. 

3.5. Proposition. (i) If for a given triple of states of a W* algebra one of 
the supports commutes with the other two, then the coherence relation does 
not hold. (ii) Given two states P~ and 02 of a W* algebra with supports S~ 
and S 2 such that S I A_S 2 = 0  and for every pair of states ~ and 0z with 
supports S-i ~< Si and S 2 <~ S 2 K(~z, P2) is false, it follows that S I S  z = O. 

Proof. (i) Assume K(Pl ,  02, P3) and [S I, $2]_ = [S I, $3] = 0. Then by 
(43) we derive St =(S~ V S2)AS~ = ( S  3 W S2)AS~ = ( S  3 A S I ) V ( S  2 A S ~ ) =  
0 by distributing as we may (cf. Holland, 1970; p, 80). But being a support 
S I 4 = 0. (ii) The assumption amounts to saying that if S i <~ S i for i = I, 2, then 

Si ~ ~ because Si A ~ = 0 follows. Using (22) 

g, = s ,  - ( s ,  A s #  ) ( s ,  v s #  ) - s #  = s,_ - ( s ,  1 A s2)  = 

we have a contradiction unless ,.~ = $2 = 0, which means that S1 ~< $2 -L , or 
equivalently S I S 2 -- 0. �9 
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It is interesting to note that the intimate relation between incompatibil- 
ity and coherence exemplified by Proposition 3.5 is due to the orthomodular 
lattice structure of P(,q,l?) alone. But the lattice P('),I~) determines a large 
part of the algebraic structure of '))5. 

3.6. Proposition. Let ~~ be a W* algebra. Then ~,1? is Abelian, iff 
K = ~ .  

Proof Observe first that the ternary K relation is void, iff the binary K 
relation is void. Now, if ~.~ is Abelian, then all support projections com- 
mute, and by Proposition 3.5(i) the ternary K relation can never hold. 
Assume, conversely that the binary K relation is empty. Then by Proposi- 
tion 3.5(ii) [P, Q]_ = 0 for all ~-finite projections P and Q with P A Q = 0. 
If P and Q are arbitrary o-finite projections, then P ' =  P - ( P A Q )  and 
Q'= Q - ( P  AQ)  have the same commutator as P and Q, are o-finite, and 
have trivial intersection. Thus, all o-finite projections of ~ commute. If P is 
not o-finite, there exists an increasing net {Pv} of o-finite projections Pv 
with P = V Pv' and by the o(93~, 93~.)-continuity of the left- and right-mul- 
tiplication map, P commutes with every o-finite projection. Repeating the 
argument, we conclude that all projections commute, which implies that ~ 
is Abelian. �9 

In order to show that states with maximal incompatible supports have 
strong coherence properties, let us denote by 0 t a state which has support 
So • for a given state P with support S o 4:1 in a o-finite W* algebra (the 
definition makes no sense otherwise). 

3. Z Proposition. For two given states p ~ and Pz of a o-finite W* algebra 
with supports S~ and S 2, the following conditions are equivalent: 

(i) K(p 3, P2, P-~ ) 

(ii) C(S~,S2)--O [cf.(18)] 

These conditions imply (iii): There is no nontrivial ( 4:0 and 1) projection 
which is truth-definite for 01 and P2. 

Proof. Assume (i); then S I A S  2 = S  2ASj  •  and S I v S  2 = S  2 v S I  • 
= S I V Sl • = 1, and orthocomplementation gives Sj A S~ = Si I A S~ = 0, 
whence C(SI, $ 2 ) = 0 ,  which is (ii). Assume (ii); then using a shorthand 
notation for the four possibilities involved, S I"  ~ A S~ • = 0 and S I • ~ V 
S~•  which shows that the triple (S~, S 2, S~ •  satisfies (43). Since by 
assumption on ~P~, S I" supports some state, (i) follows. Assume (i.i), then if 
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P is truth-definite in 0~ and 02, we have four cases: 

(TT) S I ~ P  and 

(TF) S I~<P and 

(FT) P~<SI • and 

(FF) P~<S I" and 

S 2 ~ P = I = S  ~ VS2 <~P=P=I 
P<~&I=SI <&_• SIAS,Z = 0  

S 2 ~ P = S 2 ~ < S I  J - = S 2 = & _ A S I  • = 0  

P < ~ S ~ P < ~ S I  " AS~  = 0 = P = 0  

Since (TF) and (FT) contradict the assumption that S~ and S 2, respectively, 
are supports, we obtain (iii). �9 

A simple example, S I = diag(1, 1,0) and S 2 = diag(0, 1.1)in the (3 •  
matrices, shows that (iii) does not imply (ii) in Proposition 3.7. 

Both for technical as well as interpretational purposes it is useful to 
reduce the coherence relation for arbitrary states to that of factor states. 

3.8. Proposition. Let 9)~' be a W* algebra with a separable predual, 
the central measure corresponding to some faithful (normal) state of 9Jr (cf. 
Section 2) by means of which the states and observables are decomposed, 
and pi = f ep,  d~ (r i = 1,2, 3, be states of ~3~. Then 

K(p,, P2, P3), iff K(p~, p~_, p~)~-a.e. (48) 

K(p,, P2), iff K(p'~, p~)ff-a.e. (49) 

Proof Follows directly from Proposition 2.7. �9 
Note that (48) is just the generalization of (47) to nonpure states, and 

W* algebras with nonatomic centers. 
Another notion which has to be generalized from traditional quantum 

mechanics to our algebraic formalism is that of a coherent subspace. For 
pure states a coherent sector corresponding to a given pure state O should 
consist of all states which are coherently superposable with p (they are 
automatically pure) together with O itself. Since for different pure states p 
and qv one has automatically S o A S~ = 0, the characterization of the coher- 
ent sector G(p) of a pure state can be given directly in terms of the 
coherence relation as follows: 

c(p)-- r176 K(p,,p)} u (p} 

=(ep~| and S, ASo=O}U(o } 

= {~o~ | there exists a unitary element U~ 9]~ 
such that ~ ( A ) = P ( U*A U ) for all A E 9J} }. (50) 
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Although the first two equalities in (50) are always true, one cannot 
conclude from S,p = U * S y  that either Sw = Sp or Sw A S ~ -- 0 if S o is not an 
atom (i.e., p is not pure). The different forms of (50) are no longer 
equivalent for nonpure states. In our opinion it is natural to say that a state 
(p belongs to (:'(O) if there is a finite chain beginning at P, ending at % and 
such that adjacent states of the chain are in the binary K relation. That is O 
and cp are involved in an interference phenomenon. More precisely, we have 
the following. 

3.9. Definition. Two states O and cp of a W* algebra are said to be in 
the interference relation l(o, q~) if either K(O, ep) or there exists a finite set 
of n states (XI,X2 . . . . .  X,,} such that K(O, XI), K(XI, X2) . . . . .  K(X,,,qv) is 
valid. The latter relation will be denoted by K ''+ t(O, q0). 

As a product of symmetric binary relations I( . , . )  is symmetric. I(.,.) is 
of course transitive but not necessarily reflexive, i.e., l (p ,  p) may be valid or 
not. We can now define the coherent sector corresponding to a state as 
follows: 

3.10. Definition. The coherence class of a state p of a W* algebra is 
~(p)  ---- {ep ~ ~,, : l(p,  (p)}. 

It is easily verified that for pure states (50) coincides with Definition 
3.10. The definition of I guarantees that the state space | can be partially 
partitioned into well-defined, nonintersecting coherence classes. (~(p) is 
empty iff p does not belong to (:'(p), iff S o has nontrivial intersection with 
every unitary equivalent projection. As a straightforward consequence of the 
definitions and (7) we obtain the following proposition. 

3.11. Proposition. Let u be a structural symmetry of a W*-algebraic 
description (i.e., u is an affine bijection of the state space, or a Jordan-*-  
automorphism). Then p maps coherent triples into coherent triples and 
coherence classes into coherence classes. 

4. C O H E R E N C E  IN FACTORS 

According to Proposition 3.8 the coherence relations in a decomposable 
W*-algebra can be reduced to those of factors. We will now analyze the 
coherence relations in o-finite factors. Throughout this section, ~. is a 
o-finite factor. In order to classify the relevant unitary equivalence classes in 
P(~.) we first identify the classes of equivalent projections E,~ by means of 
the value d of the dimension function. Only in the case that d - - o o  does 
unitary equivalence constitute an additional condition by stipulating that 
also the complementary projections have constant dimension, because only 
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in this case is c =  D(P  •  D ( 1 ) -  D(P )  not fixed by the value of D(P) .  
Thus we will only in this case make explicit the value c of this "codimen- 
sion" in the notation ~t (') of a unitary equivalence class of projections. d 

By Theorem 3.3(ii), a necessary and sufficient condition that one (and 
(c~ of P ( ~ )  have a hence every) element in a unitary equivalence class ~t d 

nonintersecting partner is 

d ~< D ( I ) / 2 ,  if ~, is finite (51) 

c = oo, if ~. is infinite (52) 

A rather unexpected result of our discussions is the following theorem, 
which shows that type III factors have strong coherence properties. They are 
almost sufficient to characterize these factors. 

4.1. Theorem. Let ~)~ be a cr-finite W* algebra. The following 
conditions are equivalent: 

(i) '~)~ is a factor of type 12 or III. 
(ii) For each projection P of ~)~ with 0 < P < 1 there exists a 

projection Q such that C(P, Q)= O. 
(iii) For each nonfaithful state p of '32~ there exist states cp and 

X of 93~ such that K(O, % X). 
(iv) Every pair of states p and cp of 9)~ with S p / ~ S ~ = 0  

satisfies K(p, cp ). 

Proof (a)  Every projection P of the 12 factor with 0 < P < 1 is an atom. 
Thus every state is either pure or faithful. To deduce (ii) take any atom Q 
different from P and P •  then P, P • 1 7 7  are all different atoms of 12. 
C ( P , Q ) =  0 follows. To obtain (iii), choose any two pure states cp and X 
such that P, % and X are mutually different. (iv) is established analogously. 

(fl) If ~,~)~ is a factor of type III, we use the fact (Sakai, 1971; 
Proposition 2.2.14) that all nonzero projections in a o-finite factor of type 
III are equivalent and thus all projections P with 0 < P <1 are unitarily 
equivalent (because their complements are equivalent). Theorem 3.3(iii) 
gives (ii). If p is not-faithful, then So',z'Sp • Taking cp such that C(Sp, S~) = O, 
we have K(p, p• ep). This produces (iii). Again, Sp/x S~ = 0 gives nontrivial- 
ity of both S~ and S o and then S ~ S  o. Theorem 3.3(i) gives (iv). 

(a)  and (fl) show that (i) implies the rest. 
(~,) Assume conversely that 9)2 is not a factor of type 12 or III. Then 

either 9~ is not a factor, or it is a factor of one of the following types: I ,  
( n ~  >3) ,  II. If ~ is not a factor, we have a central projection P with 
0 < P < 1. C(P, Q) = 1 for every projection Q by (18), and a state supported 
by P cannot belong to a coherent triple by Proposition 3.5(i). The factor 
cases can be excluded by use of Theorem 3.3(ii) and (iii). �9 
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The property which is shared by states lying in the same coherence 
class of g. is made explicit in the following result: 

4.2. Theorem. Given two states 0 and q0 of ~., the following 
conditions are equivalent: 

(i) l(p, ep) 

(ii) K2(p, r 

(iii) So'~'S~, and K(p, X) for some state X of ~. 

In particular K 2(., .) is transitive. 

Proof The implications ( i i )=( i )=( i i i )  are clear for any W* algebra. 
Assume (iii). To prove K~(p, cp) we have, in view of Theorem 3.3(i), to 
establish the existence of a projection P of 7~" such that P ~ S o and P /x  S o = 
P/~ S~p = 0. Since K(p, X) holds, Theorem 3.3(ii) implies S o -< So • and hence 
by unitary equivalence S,p-< S~ .  We have two cases: 

(a)  S o V S~ is finite: We first prove that in this case S o/~ S~ < S • S • 
A p icp ' 

If S~ (hence S~ ) is infinite, then ~. must be infinite, and then S o A S 4 = 
(S o V S~) j- is infinite as complement of a finite projection in an infinite 
factor. Whence S o A Sw < So • V S~ by finiteness of S o/~ Sq,. If So • is finite, 
then ~- is finite, and application of (27) gives 

D(S o A S ~ ) = D ( S p ) +  D ( S ~ ) -  D(S o V S~) 

<---D(So • )+ D(S~,)-  D(S o V S~) 

= D(So• + D ( S p ) - D ( S  o V ST) 

= D(1 ) -  D(SoV S~) 

=D( (SoVS~)  • 

using D(S~ ) = D(S o) ~ D(So • ). We thus have a Q such that ( S o/~ S~ ) - Q ~< 
so •  Now by Sakai (1971; Proposition 2.4.2), A = S p - ( S o / ~ S ~ ) - S  ~ 
- ( S  o A S~)= B, and by Fillmore's Lemma A and B are strongly perspec- 
tive, say via R, s i n c e A / X B = 0 .  Since R ~ < R V A = R V B = A V B ~ < S  oV 
S~, R 2_(S o V S~) • and then R _LQ. Let P = Rq~Q (the symbol @ stands 
for V when connecting orthogonal elements). Since Sp/x S~ 2- A (respec- 
tively, B) we may add the equivalences A - R ~ B and S o A S~ ~ Q ~ S o A S~, 
to obtain S o = A(9( S o A S , ) ~  R ~ Q  = P ~ B~(  S o A S~) = S~. Finally, it is 
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easily ~hown that (B V R)•  A Sq,)V Q) and that (A V R)_I_ ((Sp A S~)V 
Q), so that Holland (1964; Lemma 7) gives S o A P = (A@(Sp A S~))A(R@ 
Q) = (A A R ) @ ( S  o A S,~ A Q) = 0 and (analogously) S~ A P = 0. 

(fl) S o V S~ is infinite: We have S o (hence S~) are infinite, for otherwise 
Sakai (1971; Corollary 2.5.5) would lead to SpVSg; is finite. Since So-< 
So • So J- is infinite and then S o - So:. By Fillmore's Theorem S o and S, are 
perspective via a P, i.e., P A S O = P A S~ = 0 and P V S o = P V S~ = 1, Equa- 
tion(22) g i v e s P = P - ( P A S o ) ~ ( P V S p ) - S o = l - S o = S / ~ S o .  �9 

4.3. Corollao,. Given a state 0 of ~, then either K(p, X) for 
some state X of ~ and then {.P(p)= {93 E,~,,(~-): S~s or G(p) 

We have thus recovered partially (50) which is valid for pure states. 
However, one cannot conclude from 93 ~ t ' (p )  that 93(A)= p(U*A U) for 
some unitary elements U E ~- and all A ~ ~., as one easily sees in the 14 
factor for nonpure states. 

It would be interesting to know if the K 2 relation is transitive in the 
general case of W* algebras or even orthomodular lattices, that is, if there is 
a purely lattice theoretic proof of Theorem 4.2 without the assumption of a 
lrivial center. 

~"} specify the coherence classes via The unitary equivalence classes ~ta 

{3d{"' = {93 G | ~ ) : S~ ~ ~)II['}, O < d < - c  (54) 

in o-finite factors. 
In Table I we have listed all coherence classes in the various factors, 

showing for comparison the equivalence and unitary equivalence classes of 
projections which derive immediately from the possible values of the 
dimension and codimension. In the last column we have included the usual 
coherence class of pure states occurring only in type-I factors. The compari- 

TABLE I 

Type of Equivalence Unitary equivalence Coherent Pure st. 
factor classes classes sectors sectors 

12 8~{}, '~I, {'~2 @[o, ~I, ~212 GI t~l 
13 [~o, [~ i, ['~2, L'~ 3 ~0, @I i. ~L2.9[ 3 G I t~ 
I,, 6a, O~d<~n 9 I a =  6a '  O<~d~< n ~d, I ~ < d < ~  n t+, 
Io: ~d ̀ O<~d<~~176 ~l'd=~,l,O<~d<~176 ~d, I ~ < d < ~ 1 7 6  

II I t~qd, d ~  [0, 1] 6"lla=E,i,d@[O 1] t~a,d~(O,~] none 
II~ c d E  [0, oo] ~ oo ) ~'d, t d, d C (0, ~ ) none 

III Co o, Eoo @I o, ~ @1 ~ t ~  none 



T
A

B
L

E
 I

I 

g 

T
yp

e 
of

 f
ac

to
r 

N
on

fa
it

hf
ul

 
w

h
ic

h
 

ar
e 

co
he

re
nt

ly
 

po
sa

bl
e?

 

st
at

es
 

n
o

t 

su
p

er
- 

N
on

pu
re

 
st

at
es

 
w

hi
ch

 
ar

e 
co

he
r-

 
en

tl
y 

su
pe

rp
os

ab
le

? 

A
re

 
th

er
e 

O
, c

p 
w

it
h 

S,
,/

",
 S

~,
 =

 0
 

w
hi

ch
 

ar
e 

no
t 

co
he

re
nt

ly
 

su
pe

rp
os

ab
le

? 

N
ec

es
sa

ry
_ 

an
d 

su
f-

 
fi

ci
en

t 
co

nd
it

io
n 

on
 

St
, 

fo
r 

co
he

re
nt

 
su

- 
pe

rp
os

il
io

n 
m

 

I2
 

In
~4

 

II
~ 

II
~

 

II
I 

N
o

 

N
o 

Y
es

. 
th

os
e 

w
it

h 
D

(S
v)

 

Y
es

, 
th

os
e 

w
it

h 
D

(S
~ 

) 
<

m
 

Y
es

, 
th

os
e 

w
it

h 
D

( S
o)

 
> 

I/
2

 
Y

es
, 

th
os

e 
w

it
h 

D
(S

~)
 

<
~

 

N
o 

N
o

 

N
o 

Y
es

 

Y
es

 

Y
es

. 
al

l 
co

he
re

nt
 

tr
ip

le
s 

ar
e 

no
np

ur
e 

Y
es

, 
al

l 
co

he
re

nt
 

tr
ip

le
s 

ar
e 

no
np

ur
e 

Y
es

, 
al

l 
co

he
re

nt
 

tr
ip

le
s 

ar
e 

no
np

ur
e 

N
o

 

Y
es

 

Y
es

 

Y
es

 

Y
es

 

Y
es

 

N
o 

D
(S

p)
=

I 
0 

< 
D

(S
.,,

) 
~<

 12
n 

D
(S

,•
 

) 
= 

~ 

D
(S

,,)
<

~I
/2

 

D
(S

~,
 • 

) 
= 

S o
 :#

:1
 

.-..
1 



288 Raggio and Rieckers 

son of columns 4 and 5 shows the increase of complexity which one 
encounters in dealing with coherence relations also for nonpure states. Table 
II contains in a similar pattern the answer to some formal questions 
concerning the coherence relations in factors. 

5. CONCLUSIONS 

Having elaborated the formal properties of this form of the coherence 
relation, which was obtained from the pure state superposition relation in a 
symmetric form, we may attempt a global analysis of the physical meaning. 
(A detailed analysis would depend on specific states of specific models.) By 
means of purely lattice theoretical reasoning we found that coherent super- 
posability (in the sense of Definition 3.2) and (principal) incompatibility of 
the support projections are almost equivalent conditions on the given states: 
In a coherent triple every support must be incompatible at least with one of 
the other two supports, and if the supports of two states are incompatible 
then there are two substates (the supports of which are respectively smaller 
than those of the given states) which are coherently superposable (cf. 
Proposition 3.5). But in a W* algebra there is a pair of incompatible 
observables only if there is a pair of incompatible support projections. In 
order to show the principal incompatibility of two observables one has to 
discuss all known and even all conceivable experimental devices for the 
measurement of these quantities (with the result that no two of them allow 
for the precise and simultaneous determination of their values). The touch 
of Gedankenexperiment and extrapolation is typical for this kind of argu- 
ment. In contradistinction to this, the coherent superposition of two states 
requires for confirmation only one positive experiment with interference 
phenomena. Thus, in spite of their similar formal status, coherent superposi- 
tion seems to be a much more easily accessible effect than incompatibility 
and deserves to be placed in the center of a foundational investigation of 
quantum physics. For this reason it is also gratifying that the concept of 
maximal incompatibility can be connected with coherence effects (Proposi- 
tion 3.7). 

It is interesting to characterize those pure or nonpure states which are 
in a direct or indirect coherence relation to each other and constitute thus a 
generalization of the notion of a coherent sector. In Theorem 4.2, it is shown 
that all direct or indirect coherence relations reduce to K2(O, ep) and that 
this corresponds to unitary equivalence of the supports provided that there 
is at least one unitary equivalent projection with zero intersection with one 
of the supports. One may consider this as the essential part of the property 
of being coherently superposable, and this part is thus shown to be a 
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transitive relation. For this result special features of the projection lattice 
P(~21~) came into play which are not available in general orthomodular 
lattices. 

A central point, not only for technical reasons, is the decomposability 
of the coherence relation into a set of relations for factor states. Let us 
emphasize that it is not artificial to formulate the coherence relation also for 
nonfactorial states which do not have dispersion-free values of the classical 
observables. In traditional nonrelativistic quantum mechanics one may 
argue that this is merely a shorthand notation for describing some com- 
plicated experimental situations (Example 3.4). But in elementary particle 
physics and in many-body physics there are completely natural state 
preparations, which do not fix the values of the classical observables. If the 
central decomposition of the involved states leads to pure states, then the 
coherent superposition of the classically mixed states is in fact reduced to 
the usual coherent superposition of pure states and has to be interpreted 
correspondingly. If the factor states in the decomposition are mixed states 
of a type-I W* algebra then they can be written as a countable convex sum 
of pure states of this algebra. In contrast to the factor decomposition (by 
means of a central measure) this further decomposition into pure states is 
never unique and the usual interpretational difficulties of mixed states in 
traditional quantum mechanics render also the discussion of coherence more 
intricate; cf., e.g., Ludwig (1964). As a general feature one may state that 
the coherence relation for the mixed states expresses properties which are 
common to all ensembles of pure states which may show up in the spectral 
decompositions of the involved density operators. As shown by (10), the 
supports of the mixed states O; are the projections on the subspaces V, 
spanned by the eigenvectors of the density matrices corresponding to the O; 
in any Hilbert space representation. With this in mind, we can express the 
coherence relation K(0~,02,03) in the way that every pure state in a 
decomposition of 03 (and given by 't'3 E V3) is a coherent superposition of 
pure states in certain decompositions of O~ and 02 (which are given by 
vectors ~t'z~ V~ and 't'2~ V2), but no vector in V i is a linear combination of 
vectors in ~ or V k alone, where (i, j ,  k) is a permutation of (1,2,3). We see 
that in this case it is a complicated matter to express the content of 
K(Pl ,  02, P3) by pure state coherence relations. In our opinion, however, the 
coherence relation for the considered mixed states has a value of its own: it 
decouples the experimentally observable coherence phenomena from the 
pure state idealization. This should be viewed necessary for the consistency 
of the theoretical formalism. It is impossible to prepare experimentally a 
pure state with complete precision and to discriminate it from neighboring 
mixed states. Thus, observable effects such as interference phenomena 
should not depend too sensitively on the purity of the states involved. That 
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coherent light is not dependent on a monochromatic pure state preparation 
is well known in quantum optics (Nussenzweig, 1973). 

If the central decomposition of the states in a coherent triple leads to 
factor states of W* algebras of type II or III, a further reduction to pure 
states is not possible at all. Since type II factors occur only in the infinite 
temperature representations, the physically interesting case are the type III 
factors which abound in many body physics via thermodynamic limit. A 
look at Table I or Table II shows that in these factors all states with 
nonintersecting supports are coherently superposable and that, correspond- 
ingly, there are many maximally incompatible yes-no  observables (cf. 
Theorem 4.1). This is perhaps the most important and surprising result of 
our investigation and may lead to new insights into the quantum mechanics 
of many-body systems. It deserves of course a thorough elaboration and has 
to be tested in concrete models. Let us only mention here that apparently 
the limit to infinitely many degrees of freedom makes obsolete many 
necessary conditions which restrict the possibility of coherent superposition 
for finite quantum systems. 

If as usual the dynamics, in the Schr6dinger picture, is given by a 
one-parameter group of structural symmetries, then two coherently super- 
posable states retain this property for all (finite) times. Coherence may be 
broken only by a generalized kind of dynamics or in the asymptotic limit 
t ~ ~ .  Simple dynamical models for each kind of breaking coherence, and 
thus making measurement objective are indeed available (Primas, 1971; 
Hepp, 1972). 

Let us end our discussion with a remark on the superposition principle, 
which has not been mentioned throughout our study of the coherence 
relation because we always assumed that the W*-algebraic description (i.e., 
the W* algebra) had been given at the outset. .How many possibilities of 
coherent state superpositions can be realized is then expressed by the family 
of coherence classes in the given algebra and depends, e.g., on the number 
of classical observables. A superposition principle is only required if one 
tries to reconstruct the algebraic structure from experimental data, and for 
this purpose the analysis of the possible coherent interference phenomena 
may play indeed a decisive role because they give information on how many 
observables are incompatible or classical. 
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